ESTIMATION OF RADIATION STRESS IN RANDOM WAVE FIELDS
نویسندگان
چکیده
منابع مشابه
Estimation of Random Fields
Let u(x) = s(x) + n(x) , where s(x) and n(x) are random fields, s(x) is useful signal, n(x) is noise. Assume that s(x) = n(x) = 0 , where the bar stands for mean value. Suppose that the covariance functions R(x, y) := u * (x)u(y) and f (x, y) := u * (x)s(y) are known, where the asterisk stands for complex conjugate. Assume that u(x) is observed in a bounded domain D ⊂ R r of the Euclidean space...
متن کاملPlane-wave decomposition of spatially random fields.
We investigate the uniqueness of the plane-wave decomposition of temporally deterministic, spatially random fields. Specifically, we consider the decomposition of spatially ergodic and, thus, statistically homogeneous fields. We show that when the spatial power spectrum is injective, the plane waves are the only possible coherent modes. Furthermore, the randomness of such fields originates in t...
متن کاملRadiation Fields for Semilinear Wave Equations
We define the radiation fields of solutions to critical semilinear wave equations in R3 and use them to define the scattering operator. We also prove a support theorem for the radiation fields with radial initial data. This extends the well known support theorem for the Radon transform to this setting and can also be interpreted as a Paley-Wiener theorem for the distorted nonlinear Fourier tran...
متن کاملKinetics of scalar wave fields in random media
This paper concerns the derivation of kinetic models for high frequency scalar wave fields propagating in random media. The kinetic equations model the propagation in the phase space of the energy density of a wave field or the correlation function of two wave fields propagating in two possibly different media. Dispersive effects due to e.g. spatial and temporal discretizations, which are model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Doboku Gakkai Ronbunshu
سال: 1995
ISSN: 0289-7806,1882-7187
DOI: 10.2208/jscej.1995.509_203